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Abstract 

 

As the Internet Protocol version 6 (IPv6) implementation becomes more 

widespread, the IP Security (IPSec) features embedded into the next-generation protocol 

will become more accessible than ever.  Though the network-layer encryption provided 

by IPSec is a boon to data security, its use renders standard network intrusion detection 

systems (NIDS) useless.  The problem of performing intrusion detection on encrypted 

traffic has been addressed by differing means with each technique requiring one or more 

static secret keys to be shared with the NIDS beforehand.  The problem with this 

approach is static keying is much less secure than dynamic key generation through the 

Internet Key Exchange (IKE) protocol. 

This research creates and evaluates a secret-key sharing framework which allows 

both the added security of dynamic IPSec key generation through IKE, and intrusion 

detection capability for a NIDS on the network.  Analysis shows that network traffic 

related to secret-key sharing with the proposed framework can account for up to 58.6% of 

total traffic in the worst case scenario, though workloads which are arguably more 

average decrease that traffic to 10-15%.  Additionally, actions associated with IKE and 

secret-key sharing increase CPU utilization on the NIDS up to 20.7%.  Results show, at 

least in limited implementations, a secret-key sharing framework provides robust 

coverage and is a viable intrusion detection option. 
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ENABLING INTRUSION DETECTION IN IPSEC PROTECTED IPV6 
NETWORKS THROUGH SECRET-KEY SHARING 

 
 

1 Introduction 

 

1.1 Background 

Network security is a topic of much interest.  Incidents involving malicious code 

such as the Blaster and Code Red worms demonstrate skilled hackers are capable of 

causing havoc on systems and networks.  This, coupled with the fact that Microsoft 

published 45 security bulletins in 2004, shows there are plenty of vulnerabilities to be 

exploited in the most prevalent operating systems on the Internet [Mic04].  Many tools, 

from firewalls to virus scanners, have been developed to aid in network security.  An 

increasingly common method for protecting a network is an Intrusion Detection System 

(IDS).  IDSs come in a variety of types, most notably host-based IDS (HIDS) and 

network-based IDS (NIDS).  HIDS are installed on individual network hosts, as the name 

suggests, and traditionally examine log files and system registries on the host to 

determine if an intrusion attempt is underway or has taken place.  NIDS, on the other 

hand, monitor network traffic by examining packets on the network for signs of attack, or 

attack signatures.  Misuse-based NIDS perform pattern matching on Ethernet packets, 

whereas Anomaly-based NIDS try to determine what “normal” network activity is, and 

alert operators of any deviations from that model.  The former is currently more 

prevalent. 
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Although a “defense in depth” approach is a sound security principle, if a choice 

must be made between a HIDS or NIDS, often a NIDS is selected.  This one appliance or 

software suite protects an entire subnet and is generally easier to manage than numerous 

HIDSs.  A widely acknowledged shortcoming of a NIDS, however, is it cannot examine 

encrypted traffic [Tri03, Shi02, Fed04, Tay02].  Without the ability to decrypt traffic, the 

NIDS cannot perform pattern matching for attack signatures.  While there are ways to 

work with encrypted traffic for specialized circumstances, such as Secure Socket Layers 

and HTTPS traffic [Mca04], those forms of data protection don’t provide as broad a 

coverage as IPSec which operates at the network layer. 

The problem is exacerbated by the advent of Internet Protocol version 6 (IPv6) 

[Tri03].  This next-generation IP protocol is currently in the implementation phase in 

many Asian countries, and will replace IPv4 globally in the near future.  IPv6 is touted as 

being more secure, as it natively supports the Authentication Header (AH) and 

Encapsulating Security Payload (ESP) header which are available to IPv4 by using IPSec 

[War03].  ESP provides network layer encryption which can be applied to all IP traffic 

traveling to or from a host.  This provides a great deal of security benefit for legitimate 

traffic, but it has the side effect of allowing malicious traffic to be encrypted as well, 

denying a NIDS the ability of detecting the attack. 

This research creates a secret-key sharing framework enabling a host on an IPv6 

network with ESP encryption to decrypt network traffic and send it to a NIDS engine for 

attack detection.  The performance of the system is analyzed across a range of encryption 

types and traffic loads. 
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1.2 Problem Definition 

1.2.1 Goals and Hypothesis  The goals of this research are straightforward.  Since 

NIDSs are currently limited to non-encrypted environments, the overarching purpose is to 

find a way around that limitation.  The first specific goal is to create and implement a 

secret-key sharing method which allows decryption of network traffic and passing of the 

same to an intrusion detection engine in the clear.  The ability of the system to detect 

individual attacks is evaluated through empirical testing. 

The second goal is to examine traffic patterns generated by providing workloads 

which vary in the percentage of encrypted traffic and attack payload size.  Response to 

the workloads is studied in scenarios with different network configurations and different 

keying methods. 

The third and final goal compares the performance of the physical IDS host in an 

IPSec encrypted environment utilizing static keys versus dynamic keys with varying key 

expiration times.  More explicitly, the goal determines how well the secret-key sharing 

framework enables attack detection on the encrypted traffic by examining the CPU 

utilization of the computer hosting the IDS.  The intrusion detection engine itself acts 

independent of the framework (although on the same physical host), and is presented 

clear text data either directly or after decryption by the framework.  The likely result is 

that detection will be hampered by a significant increase in computation required to 

decrypt the traffic.  The comparisons, however, will provide some insight into whether 

such IDS are feasible in high throughput networks. 
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Overall, the expectation is a minimal-overhead framework can be developed for 

secret-key sharing, enabling attack detection on encrypted traffic.  The hypothesis is the 

decryption bottleneck, even in a subnet of limited size, occupies a high enough 

percentage of CPU cycles on the IDS host as to make the impact of secret-key sharing 

negligible, lending credence to the idea that a dynamic keying with a secret-key sharing 

framework is a viable option to static keying. 

1.2.2 Approach  To accomplish the goals of the research, the secret-key sharing 

framework is developed.  This framework transfers keys from a host to the IDS interface 

whenever a new key is generated.  In addition, it receives keys on the IDS interface, 

decodes and decrypts Ethernet packets, and passes clear text data to the intrusion 

detection engine.  This is accomplished through modification of an open-source Internet 

Key Exchange (IKE) implementation, as well as generation of some custom software for 

the decryption interface. 

With the secret-key sharing framework in place, the second and third goals are 

addressed by subjecting the framework to various factor levels and observing the 

responses.  When all experiments are complete, trends are examined and compared to the 

hypothesis. 

 

1.3 Summary 

This thesis contains four additional chapters.  Chapter 2 discusses background 

information pertinent to the experiments, and the current state of research in the areas of 

IPv6 and intrusion detection for encrypted traffic.  Chapter 3 describes the experimental 
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methodology, and Chapter 4 presents the data and analysis resultant from the 

experiments.  Finally, Chapter 5 presents a the conclusions of the research and explores 

ideas for future work. 
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2 Background/Literature Review 

 

2.1 Introduction 

 This chapter presents an overview of the problems facing network security in light 

of the implementation of IPv6, and explores concepts important to developing a secret-

key sharing framework and Intrusion Detection System (IDS) for an IPSec enabled IPv6 

network.  Section 2 describes details about IPv6, and how it differs from IPv4.  Section 3 

gives a more detailed look at the Authentication Header (AH) and Encapsulating Security 

Payload (ESP) header built into IPv6.  Section 4 provides information about the Security 

Associations which support the AH and ESP headers, as well as the Security Association 

Databases (SAD) and Security Policy Database (SPD).  Section 5 looks at problems that 

widespread use of the AH/ESP headers pose to Intrusion Detection Systems (IDS), and 

Section 6 examines the issues that need to be addressed in order to overcome these 

problems.  Finally Section 7 looks at relevant research in the area. 

 

2.2 Internet Protocol Version 6 (IPv6) Basics 

IPv4 is an aging protocol.  Perhaps the biggest motivation for the evolution to 

IPv6 is the depletion of the limited address space provided by IPv4.  An IPv4 address is 

comprised of 32 bits that represent a network address.  No matter how the available 

address space is divided among different entities, it can only provide approximately 4 

billion IP addresses.  When IP was first implemented, Internet activity was dominated by 

educational institutions, research centers, and other professional organizations. At that 
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time, the 4 billion addresses must have seemed more than sufficient.  However, the 

success of commercial forays on the Internet coupled with the amazing growth over the 

last 20 years resulted in the address space reaching its limit. 

This is especially true in countries other than the US.  The US has a fairly high 

percentage of IP addresses.  For example US-based Level 3 Communications owns 3 

Class A networks, which gives them a slightly larger address space than all of Asia 

[Sch04].  For this reason, some countries such as Japan and Korea have mandated 

implementation of IPv6 by 2005 [Emi02].  IPv6 will, first and foremost, alleviate the 

address space problem.  Rather than the 32-bit address provided by IPv4, IPv6 has a 128-

bit address, or approximately 2^128 = 3.40 * 1038 addresses.   

Transition to IPv6 in the US is likely to be slower than some foreign countries, 

since the US has enough IPv4 addresses to meet near-term needs.  Techniques have been 

developed which prolonged IPv4’s success despite the problems.  For instance, Network 

Address Translation (NAT) allows private subnetworks to be connected to the Internet 

via one public IP address.  Classless Inter-Domain Routing (CIDR) provides a more 

efficient way to allocate IP addresses to organizations, rather than the allocation of only 

class A, B, and C networks.  However, the eventual adoption of IPv6 seems inevitable.  

This is good given that, among other improvements, IPv6 has built-in authentication and 

security mechanisms discussed in Section 2.3. 

IPv6 improves on IPv4 by standardizing more of the IPv4 “options” and more 

efficiently using these functions. Additionally, the IPv6 header is more space-efficient 

than the IPv4 header, as shown in Figures 2.1 and 2.2.  The IHL, type of service, 
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identification, flags, checksum, and options and padding fields were dropped for IPv6.  

Even with an address four times longer, the header is only twice as large.  The header 

also provides greater flexibility.  For instance, packet priority can be set via the Traffic 

Class field so real-time applications like streaming video and audio can be given higher 

priority.  

Figure 2.1: IPv4 Header 
 

Figure 2.2: IPv6 Header 
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The following describes the header fields of the IPv6 datagram [Jav04]: 

• Version -- Internet Protocol Version number (IPv6 is 6).  

• Traffic Class -- Traffic class field enables a source to identify the desired delivery 
priority of the packets. Priority values are divided into ranges: traffic where the 
source provides congestion control and non-congestion control traffic.  

• Flow label -- Flow label is used by a source to label those products for which it 
requests special handling by the IPv6 router. The flow is uniquely identified by 
the combination of a source address and a non-zero flow label.  

• Payload length -- The length of payload including header.  

• Next header -- Identifies the type of header immediately following the IPv6 
header.  

• Hop limit -- It is decremented by one by each node that forwards the packet. The 
packet is discarded if the Hop Limit is decremented to zero.  

• Source address -- 128-bit address of the originator of the packet.  

• Destination address -- 128-bit address of the intended recipient of the packet 
(possibly not the ultimate recipient, if a Routing header is present).  
 

Each header type is assigned a value in IPv6.  The Next Header field indicates 

what type of header is next in the chain by specifying its value.  For example, a value of 

‘50’ indicates the next header is an ESP header.  The last extension header in the chain 

indicates that payload data is next.  Additionally, IPv6 headers can be an arbitrary length 

and not limited to 40 bytes like IPv4.  This allows options to be used for many new things 

which were not possible or practical in IPv4, such as authentication and security 

encapsulation discussed in the next section [DeH98]. 
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2.3 Authentication Header and Encapsulating Security Payload Header 

IPv6 has two significant security benefits, in the form of two extension headers.  

The option to use these headers is available in IPv4 for a host running the Internet 

Protocol Security (IPSec).  However, these headers are integrated into IPv6 and are 

expected will gain wider acceptance and usage as IPv6 becomes a world-wide standard. 

The first benefit is the Authentication Header (AH), which provides data 

authentication and integrity.  Any data which has been tampered with en route, or 

generated by a spoofing source can be detected.  However the data might be read by an 

unauthorized party [KeA98a].  This isn’t a threat to an IDS, which is not concerned with 

authenticity of data, but rather its content. 

Figure 2.3: Authentication Header (AH) 

 

In these two headers shown in Figures 2.3 and 2.4, the security parameter index 

(SPI) field enumerates a Security Association (SA) between sender and receiver.  The SA 

itself includes information indicating how the sender and receiver will encrypt and/or 

authenticate their conversations.  SAs are discussed in more detail in the next section 

[KeA98a, KeA98b]. 
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Figure 2.4: Encapsulating Security Payload (ESP) Header 

 

The authentication data field varies in length, based upon the authentication 

algorithm, and holds the authentication value computed by the sender.  When a 

destination receives an authenticated packet, it computes an authentication value in the 

same way as the source, and then compares the two.  If the two values match, then the 

packet is considered authentic. 

The ESP header has a few of the same fields as the AH header with a couple of 

additions.  The payload field typically contains the encrypted payload data, but can also 

include information required for decryption.  For example, encryption algorithms such as 

Data Encryption Standard (DES) and Advanced Encryption Standard (AES) require an 

initialization vector (IV) equal in size to the block size, which is placed in the payload 

field prior to the encrypted data.  The next header field indicates the type of payload 

which is encrypted (i.e., 6 for TCP data, or some other number if there are destination 

option headers included).  The ESP header must be the header last in the chain as shown 

in Figure 2.5 as it encrypts all data following it [KeA98b].  Finally, the padding field size 
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is variable in and used to pad the payload to a multiple of the encryption algorithm block 

size. 

Figure 2.5: ESP Header Chain 

 

AH and ESP can be used in two modes, Transport Mode and Tunnel Mode which 

are illustrated in Figures 2.5 and 2.6 respectively.  Transport mode is generally 

considered a host-to-host mode.  The authentication and encryption security is applied to 

data leaving one host, and is not removed until it reaches its destination.  In this case, 

ultimate source and destination addresses are not protected, nor is the SPI or any header 

information—only payload data is protected.  Tunnel mode, on the other hand, creates a  

 

Figure 2.6: ESP Packet in Tunnel Mode 
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secure channel between two gateways or between a host and a gateway.  In tunnel mode, 

the inner headers (any data from the local side of the gateway) are also encrypted.  If the 

host is tunneling, this protection is essentially useless because the outer address is the 

same as the inner address. This type of communication protects data from host to host, 

although not along the entire path—only on the length of the tunnel [KeA98a, KeA98b, 

KeA98c, Hui96].  

 

2.4 Security Association Databases and Security Protocol Databases 

Security Associations are the basis of IPSec functionality.  Simply stated, an 

IPSec SA is an agreement between two nodes on a network which allows them to 

communicate securely.  It is identified uniquely by a triple of an SPI, the destination 

address, and the protocol used (AH or ESP).  An IPSec SA is one-way, so two-way 

traffic requires two IPSec SAs  [KeA98c].  An SA includes an encryption/decryption 

algorithm, a cryptographic key, and other details such as the lifetime of the key.  Keys 

can be updated manually by system administrators, or automatically via Internet Key 

Exchange routines.  SAs can be set up manually, or created via the Internet Security 

Association and Key Management Protocol (ISAKMP) [KeA98c]. 

When an encrypted packet is received by a network node, it must examine the 

clear text SPI field, destination address, and protocol field, and correlate it with an SA 

from the source.  If a valid SA exists, the host applies whatever rules the SA dictates to 

decrypt and/or authenticate the data.  If an SA does not exist, the data is either discarded, 

or in some implementations, an SA is generated.  All SAs are housed in a Security 
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Association Database (SAD) which resides on the endpoints of the secure channel 

[KeA98c]. 

Another important piece of the protocol is the Security Protocol Database (SPD), 

which correlates SPIs to SAs by specifying “what services are to be offered to IP 

datagrams and in what fashion.” [KeA98c]. The SPD is consulted for all incoming or 

outgoing traffic, and takes one of three actions: apply IPSec protection to the data, allow 

the data to bypass IPSec protection, or discard the packet.  In the case of outgoing traffic, 

if the SPD determines that IPSec protection should be used, the SPD entry will contain an 

SA or set of SAs which should be applied.  For example, a policy listing could call for 

“all matching traffic to be protected by ESP in transport mode using 3DES-CBC…, 

nested inside of AH in tunnel mode” [KeA98c].  The SPD entry is linked to a particular 

SA or set of SAs in the SAD, which are applied in a specific order.  Similarly, with 

incoming traffic, the SPD is consulted, and if required, SAs are pulled from the SAD for 

use. 

 

2.5 Limitations Posed Upon Network-based Intrusion Detection Systems 

Network Intrusion Detection Systems (NIDS) are a popular means of protection 

against computer network attacks.  They are placed in a subnet where they monitor 

network traffic.  Primarily passive, they add little if any network overhead, and are 

virtually undetectable.  Most IDSs operate similar to anti-virus programs, by searching bit 

strings for patterns which indicate malicious activity or network misuse.  While an 

antivirus program examines files, a NIDS examines IP packets [Ran02]. 
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Snort is an open-source NIDS representative of the genre.  Snort is a very robust 

IDS which can be used on Linux, BSD or Windows platforms among others.  It provides 

several levels of operation, from simply sniffing TCP/IP packets, to logging them, to 

providing full IDS service [Roe04].  Snort allows users to configure rules on which 

portions of traffic to examine and also provides real-time alerts to possible attacks.  

Though Snort is developing IPv6 support, it is not currently available in the public 

release.  More than one effort is in place to develop IPv6 support for Snort, but it is 

apparently a low priority due to the rarity of IPv6 implementations.  Internet Security 

Systems (ISS) has had a, IPv6 NIDS appliance available since 2003, but not many 

competitors have followed suit [Iss04].   

Despite the lack of current IPv6 IDS options, future prospects are promising.  

There are already IPv6 packet sniffers, one such being Ethereal.  Ethereal is an open 

source sniffer which can decode 500+ protocols, IPv6 included [Eth04].  Once the 

capability of sniffing and dumping IPv6 packets is in place, it is only a matter of 

analyzing that data and looking for signs of intrusions.  Dexter is a proof-of-concept IPv6 

IDS [HaM03] which shows that IPv6 traffic can effectively be captured and decoded for 

use with an IDS.  Once these packets were decoded, Dexter classified them into different 

services originating the packets, and did no actual IDS analysis.  

What really poses a threat to NIDS systems, and is exacerbated by IPv6, is the 

prospect of widespread use of the ESP capability.  Typically an IP stack is transmitted in 

the clear, allowing a NIDS (or any intermediate source) to examine the data and do 

pattern matching.  Encrypted packets, on the other hand, cannot be examined unless the 
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computer capturing the packets has the decryption key and knows the decryption 

algorithm.  This data, by design, is only available to the endpoints of the communication 

channel. 

A solution to the problem of examining encrypted traffic with a NIDS is called a 

Network Node IDS (NNIDS).  In a NNIDS implementation, NIDS functions are 

delegated to individual hosts on the network.  Unlike a host-based IDS (HIDS) which 

examines log files and activities on a local machine, the NNIDS examines the TCP/IP 

traffic just as a traditional NIDS would.  This arrangement has some significant 

advantages, such as the ability to handle encrypted traffic, and distributing the load of 

intrusion detection across many computers, rather than doing all packet examination with 

a single dedicated NIDS.  The drawback, though, is each computer on the network has to 

maintain an up-to-date attack signature database [Nss04]. 

 

2.6 Problems to be Addressed 

For a NIDS to effectively protect a network whose hosts are running IPSec, it 

must have enough information to decrypt and scan network traffic.  In a network 

employing IPSec with static secret-keys, it is conceivable to load the keys onto the IDS 

beforehand, affording it the ability to decrypt data using those keys.  IPSec, however, was 

intended to be more flexible than having static keys assigned to every host.  Security 

associations can be dynamic, with keys refreshed as often as necessary for the desired 

level of security.  To develop such a system, other support services are needed, including 

the Internet Key Exchange protocol and details of the algorithms used to encrypt the data. 
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2.6.1 Internet Key Exchange (IKE)  The IKE is a framework defined in Request 

for Comments (RFC) 2409 for the establishment of security associations, over which 

IPSec transactions can take place.  It is based on the Internet Security Association Key 

Management Protocol (RFC 2408), the Oakley Key Exchange (RFC 2412) and the 

Security Key Exchange Mechanism (SKEME) described below [HaC98].   

ISAKMP ([MSST98]) provides a framework for authentication and key exchange but does 
not define them.  ISAKMP is designed to be key exchange independent; that is, it is 
designed to support many different key exchanges. 
 
Oakley ([Orm96]) describes a series of key exchanges—called "modes"-- and details the 
services provided by each (e.g. perfect forward secrecy for keys, identity protection, and 
authentication). 
 
SKEME ([SKEME]) describes a versatile key exchange technique which provides 
anonymity, repudiability, and quick key refreshment. 

 

A “security association” of the ISAKMP is different from that in IPSec.  In 

ISAKMP, the security association is a two-way communication path between two hosts, 

whereas IPSec SAs are simplex, and are negotiated using the security associations 

created by ISAKMP.  Though both security associations ultimately accomplish the same 

end result (secure communications between hosts), the goal of the IKE security 

association is to give IPSec clients a method of creating their own SAs.  Therefore, in 

instances of dynamic IPSec SA creation, it is likely an IKE security association precedes 

any IPSec SA negotiation [HaC98]. 

An IKE association has four modes of operation, Main, Aggressive, Quick, and 

Group.  The association itself is handled in two phases.  In Phase 1, two ISAKMP hosts 

establish a secure and authentic communication channel, the ISAKMP security 

association.  Phase 1 is accomplished for both Main and Aggressive mode.  Phase 2 of 
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the ISAKMP security association is basically everything after Phase 1—it’s the time 

when SAs are negotiated on behalf of IPSec or other services.  Quick mode is used in 

Phase 2.  In this manner, many IPSec SAs can be created with one ISAKMP security 

association.  The remaining details about IKE operation are not relevant, because this 

research focuses on IPSec (Phase 2) SAs. 

IPv6 and IPSec are currently available for most popular operating systems.  IPSec 

and IPv6 are fully supported in Windows 2000 (SP1), Windows XP (SP1), and Windows 

Server 2003—but not concurrently.  According to Microsoft’s website, the Windows XP 

implementation of IPv6 supports IPSec with some key limitations: 

- The Authentication Header (AH) and Encapsulating Security Payload (ESP) are 
supported for both transport and tunnel modes. However, ESP for the IPv6 Protocol 
for Windows XP does not support data encryption. 

- IPSec in the IPv6 Protocol for Windows XP does not support the use of Internet Key 
Exchange (IKE) to negotiate security associations (SAs). IPSec policies, SAs, and 
the keys to calculate the Message Digest 5 (MD5) keyed hash for AH or ESP must 
be manually configured. 

- IPSec for IPv6 traffic is completely independent from IPSec for IPv4 traffic. IPv6 
IPSec security policies are not managed with the Windows XP IPSec Policies snap–
in. IPSec policies and SAs for the IPv6 Protocol for Windows XP are manually 
configured with the Ipsec6.exe command–line tool [Mic03] 

 

Windows Server 2003 has similar limitations.  Although it does support IPSec in 

IPv6, Microsoft does not recommend using the native implementation for “production 

use.”  Like Windows XP, it only provides static keying (not IKE exchanges) and 

although it supports the ESP headers, it does not support data encryption [Shi03]. 

The Unix/Linux/BSD operating systems seem more promising in this area.  The 

KAME project started in April 1998 as an effort to integrate IPv6 and IPSec support into 

the BSD IP stack implementations.  Researchers from Fujitsu, Hitachi, Internet Initiative 

Japan, NEC, Toshiba, and Yokogawa Electric joined forces and committed themselves to 
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three or more full-time days per week working solely on the issue.  Since its original two 

year charter, the project has been extended twice until this year, and has achieved 

impressive results.  Current status includes support for IPv6 and IPSec as well as IKE.  

The current, experimental releases are available at www.kame.net, and stable products 

are integrated into all recent FreeBSD, NetBSD, OpenBSD, and BSD/OS releases 

[Kam04]. 

2.6.2 Encryption  IPSec implementations are required to support DES-CBC, and 

3DES-CBC support is recommended.  DES-CBC is a combination block and permutation 

cipher which encrypts data in blocks of 64 bits.  Although the key size is 64 bits, the 

effective strength of the key is only 56 bits because 8 bits are used for parity and do not 

contribute to key strength.  In DES, the key is permuted, split, and rotated enough times 

to derive 16 separate keys.  The plaintext is permuted in preparation for encryption, and 

the 16 keys are applied to the text in succession [Tro04]. 

For many years, beginning in 1976, DES-CBC was the government-endorsed 

encryption method, but was eventually broken as computers grew in power [Tro04].  In 

1999, DES was broken in only 22 hours and 15 minutes by combining Electronic Frontier 

Foundation’s DES Cracker and a network of 100,000 computers on the Internet.  Some 

have even suggested that for a couple of million dollars, a system can be built to crack 

DES in an hour [Eff04].  In 1999, 3DES was instituted, which is essentially DES three 

times, with an effective key strength of 168 bits. 

The functionality of DES and 3DES is straightforward, and many 

implementations can be found in applications.  Additionally, comprehensive 
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cryptographic libraries are easy to obtain on the Internet for performing this encryption 

and decryption.  Since these are private symmetric key encryption schemes, their security 

lies solely in the security of the key itself.  Therefore, any method of sharing keys must 

afford them the same security that they are in place to provide. 

One of the challenges of this research is finding a scheme that shares secret keys 

efficiently over a LAN.  A LAN running IPSec/IKE clearly has a method of secure 

communication between the IDS and individual hosts.  Considering the NIDS as just 

another node on the network, hosts are able to establish security associations with the 

NIDS and use the link to transfer keys for their other SAs.  This effectively replicates the 

SADs of every network host on the NIDS, except unnecessary information is stripped off.  

For example, the NIDS need not be concerned with authentication of a packet, and only 

needs to know how to decrypt traffic destined for a particular host, and what key to use in 

its decryption.  It is important for the NIDS and host to authenticate with each other, and 

IKE provides for this authentication.    

  

2.7 Relevant Research 

There are numerous developments taking place with IPv6 as it transitions from 

RFCs to actual implementations.  Most popular operating systems including BSD and 

Windows include support for at least the basic features of IPv6.  The IPSec portion of 

IPv6 is not as widely implemented, though it is being developed.  KAME is one example 

of this research.  According to www.kame.net, they have integrated IPv6 into BSD with 
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IPSec support, “good coverage of algorithms on RFC,” and an IKE implementation 

called racoon [Kam04]. 

Research of security concerns associated with IPv6 is also plentiful [War03, 

Hei04, CoM04], though not all directed at IDSs.  Dexter is one example of such work, 

but there are others.  Snort developers are integrating IPv6 integration into their NIDS, 

but a working version is not available at this writing.  Current IDS systems are concerned 

with Secure Socket Layer (SSL) or Transport Layer Security, and some solutions have 

been postulated “from session key sharing by the web server allowing ‘on-the-fly’ 

decryption to server-side storage of keys for later off-line decryption of packets” [Tri03].  

With the advent of ESP built into IPv6, the problem worsens.  Encrypted traffic becomes 

invisible to the NIDS, and there is no way to ensure it is not malicious. 

One development in the commercial sector comes from McAfee [Mca04].  The 

Intrushield 2600 is an IDS appliance which protects encrypted traffic for SSL.  SSL is a 

method of data encryption for web-sessions which uses public-key encryption to establish 

shared session keys with a client (typically a web browser) through a handshaking 

process [Mca04].  By duplicating the server’s private key on the IDS appliance, the IDS 

can monitor the handshake and obtain the shared key.  Thus possessing the shared key, 

the IDS can decrypt and examine future network traffic for that SSL session. 

Likewise, there is an abundance of research into IDS and NIDS systems in 

general.  Perhaps a relevant idea is the notion of the NNIDS [Nss04], mentioned earlier.  

NNIDS systems approach the problem of encrypted traffic on two fronts: in one they can 

examine encrypted traffic because the NNIDS resides on the machine where the traffic is 
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decrypted; in the other NNIDSs increase the amount of traffic which can be effectively 

scanned by distributing it across many machines.  The latter is the most likely hindrance 

to the success of a secret-key sharing framework.  Sharing keys uses network bandwidth, 

and maintaining a key database on an already heavily tasked NIDS computer requires 

precious CPU cycles--both leading to an ultimate slowdown of the NIDS and reduced 

performance.  Clearly, as processing time increases, the load a NIDS can handle 

decreases. 

 

2.8 Summary 

 This chapter introduced IPv6 and IPSec concepts which are important to the 

research.  Support for IPv6 is not at the same level as IPv4 support.  Although this 

research project encompasses several different aspects of Internet security, the slow 

implementation of IPv6 may prove to be the biggest impediment.  
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3 Methodology 

 

3.1 Introduction 

This chapter presents the experimental methodology used for the research.  

Section 2 describes the system under test.  Section 3 defines the system services, and 

Section 4 describes the workload presented to the system.  Section 5 explains the metrics 

which are observed in the experiments.  Sections 6 and 7 explain the factors and 

parameters.  Section 9 describes the test bed setup for the experiments, and Sections 10 

and 11 explain the evaluation technique and experimental design.  Section 11 describes 

how the results will be used, and Section 12 is a summary of the chapter. 

 

3.2 System Boundaries 

The System Under Test (SUT) for this research consists of the secret-key sharing 

framework and the attached intrusion detection engine which provides the metric of 

primary interest.  The component under test (CUT) is the secret-key sharing framework 

itself, which consists of secret-key sharing processes on each host, as well as a central 

node (co-resident with the IDS software) which collects keys in a database, and captures 

and decrypts packets. 

The scope of the experiments is limited in several regards.  To begin with, 

IPv6/Ethernet traffic is the only combination allowed, as the IDS interface is only written 

to decode such traffic. 
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Figure 3.1: System Under Test 

 

Another limitation is the IDS itself.  The custom IDS used in this research is a 

basic pattern matching engine.  Overall performance of a particular IDS depends on the 

composition of its rule set and its detection methods.  The nature of this experimental 

research doesn’t dictate that a state-of-the-art IDS be used.  The throughput of the 

generated workloads is not especially high.  Packet interarrival times and burst 

distribution shape parameters are varied to ensure that IDS is capable of keeping up with 

the offered load.  Although the numbers used may not mirror practical system operation, 

there is little to be gained from the experiments if the IDS cannot reach a steady state of 

packet processing. 

Finally, the test bed is relatively small due to resource limitations with the test 

LAN consisting of six hosts and one IDS machine. 
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3.3  System Services 

The system provides an intrusion detection service on the encrypted workload.  

The possible outcomes of this service are that genuine attack attempt was detected, or the 

IDS gave a false positive.  A false positive is indicative of a more fundamental problem, 

as packet content is carefully controlled to avoid such an occurrence.  In addition to 

generating an alert on a genuine attack or false positive, the IDS could fail to detect an 

attack altogether.  This might be due to excessive packet drops (whether or not the IDS 

CPU is fully utilized), or a failure of the secret-key sharing framework to send the 

appropriate key to the IDS for ESP packet decryption. 

Over the duration of each experiment, the number of attack detections is 

observed.  A high percentage of detections relative to the number of attack attempts 

indicates that the framework is functioning properly. 

 

3.4 Workload 

The workload for the SUT is not based on an entirely realistic LAN workload.  A 

“typical” LAN workload characterization is difficult due to the large number of possible 

LAN configurations. Instead, several workloads are used to provide diverse inputs to the 

system to discover behavioral trends.  Through a series of pilot studies, the maximum 

throughput (or maximum offered experimental load) for each workload is determined by 

noting when the NIDS starts missing a significant number of attacks (more than 

approximately 5%, which indicates a failure of the secret-key sharing framework).  All 
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traffic is generated at the application layer, and each TCP payload contains an attack 

signature.   

The offered workloads vary in three regards.  First, the percentage of network 

traffic which is encrypted varies from 0-100%.  Although it is unlikely for a network to 

see 100% encrypted traffic, that level is used to stress the framework.  The second 

variation is the payload size.  Payload size distribution has a significant effect on network 

performance in terms of “good” data throughput.  The workloads for these experiments 

vary from a small payload size to nearly maximum payload size, including a statistical 

mix.  Finally three network configurations are used to alter traffic patterns.  Table 3.2 in 

Section 3.7 contains a tabular listing of workload characteristics and the associated levels. 

These workloads are justified by the goals of the research.  The goal is not to 

determine how a particular IDS performs in a particular environment, but rather to 

determine if the secret-key sharing framework adds significant overhead to the network 

and IDS CPU under various conditions. 

 

3.5  Performance Metrics 

The SUT provides several metrics which are of interest.  The first is the number 

of attack signatures detected over a period of time, or the derived metric of attack 

detection rate (number of attacks detected/number of attacks attempted).  This is clearly 

important as it is the primary indication the system is functioning.  Beyond its use to 

derive useful offered load data rates, the metric is not analyzed.  Dropped packets are also 
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measured, although this metric is primarily used to determine appropriate workload 

characteristics. 

In addition to attack detection rate, a record is maintained of how many packets 

could not be decrypted.  This metric, in conjunction with the number of dropped packets, 

is valuable in determining the cause of variation in the attack detection rate. 

The next two metrics are network throughput and network goodput.  In this case, 

“goodput” refers to the amount of “good” or “user” data which is being sourced to the 

SUT.  Although throughput is heavily dictated by the offered load, an accurate 

measurement of data presented to the SUT is beneficial for drawing conclusions about 

dropped packets and overloading the system.  Additionally, the level of network overhead 

created by the secret-key sharing framework is determined. 

The last metric is the CPU utilization of the computer hosting the IDS and key-

receiving suite. 

 

3.6 Parameters 

3.6.1  System Parameters  All hosts are running the FreeBSD 4.10 operating 

system as a VMWare guest on a Windows 2000 host machine.  FreeBSD was chosen due 

to its unique support for IPv6, IPSec, and Encapsulating Security Payload headers.  No 

other available operating system supports this combination of requirements (with the 

exception of other *BSD releases).  The decision to operate as a VMWare guest was 

driven by the convenience of the setup, and ability to easily make system changes and 

revert to previous configurations in case the installation was broken or corrupted during 
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the research effort.  Though this causes some performance penalty, it will be a penalty 

across the board on all configurations and therefore is not significant. 

Parameters specific to the secret-key sharing framework are defined as follows.  

Though the Phase 2 (IPSec) key lifetime is varied, the Phase 1 (IKE) key lifetime is set to 

1 minute.  This generates a good amount of activity on the framework with Phase 1 key 

exchanges, and prevents a false indication of steady state due to keys being static for a 

long period of time.   

Encryption type is a parameter of both the system and the workload.  The 

encryption protecting the secret-key sharing data is the same type and strength used to 

encrypt the workload.  In these experiments, encryption type is set to triple DES (3DES).  

DES is required by the Internet Key Exchange (IKE) RFC, 2409 and 3DES is 

recommended.  This and its status as one of four FIPS approved encryption algorithms 

makes 3DES a well-founded selection [Nis04]. 

 Finally, subnet size is a parameter which remains constant for the experiment.  It 

is set to six hosts, plus the NIDS.  Although this is small for a realistic model, it is 

sufficient to stress test the secret-key sharing framework in the desired way.  Subnet size 

certainly affects performance, but it is not examined in this research. 

3.6.2 Workload Parameters There are a number of workload parameters which 

affect the performance of the secret-key sharing framework.  Attacks are generated in a 

bursty fashion, according to a Pareto distribution with shape parameter of 1.5.  A shape 

parameter between 1.5 and 2.0 is appropriate for self-similar network traffic, and 

converges within a finite number of samples [Bal99, Kra04].  All three attack payload 
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sizes mandate slight adjustment of the workload parameters so that the highest possible 

throughput is used regardless of this factor.  For all scenarios, time between bursts are 

exponentially distributed, and the minimum inter-payload wait times are constant, with 

values listed in Table 3.1.  The inter-burst wait time and inter-payload wait times were 

determined through pilot studies to stress the IDS CPU without overloading the system to 

the point of dropping a high percentage of packets (greater than 5%) 

 

Table 3.1: Inter-burst and Inter-Packet Wait Times 

Payload Size 
 

Inter-burst Time (ms) Inter-payload Time (ms) 
Small 500 10 
Mix 500 10 

Large 500 100 
   
 

3.7 Factors 

The five factors varied include key method, Phase 2 key expiration time, network 

configuration, payload size, and percentage of encrypted load.  Table 3.2 contains the 

levels for each factor, and the sections following the table describe the levels in detail. 

3.7.1 Percentage Encrypted Traffic  Percentage encryption is varied 0%, 33%, 

66%, and 100%.  These levels provide some granularity which can be analyzed, rather 

than just 0 and 100% encrypted traffic.  Varying the percentage encryption causes more 

or less activity on the IDS-resident SA database. 
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Table 3.2: Factors and Levels 

  
Factor Levels 

Workload 
Characteristics % Encrypted Traffic 0%, 33%, 66%, 100% 

   
 Payload Size small, large, statistical mix 
   
 Configuration Star (6-to-6) 
  Single (3-to-3) 
  Server (5-to-1) 
   

Other Factors Key Method static, dynamic 
   
 Phase 2 Key Expiration Time 15 seconds, 30 seconds 
   

 

3.7.2  Payload Size  Packet size is not directly controlled.  Attack payloads are 

generated at the application level, leaving the TCP/IPv6 stack to encrypt, encapsulate, 

and transmit them.  This is needed to ensure the framework functions with the IPSec 

enabled FreeBSD stack.  As a result, packets cannot be directly crafted.  Thus, true 

packet size is a factor of the TCP/IPv6 stack as well as encryption constraints, and 

payload size is varied to generate packet near to the desired size.  Payload size, then, 

takes on one of three values: small, large, and statistical mix. 

The small payload size is a very small payload containing the attack signature 

padded to 40 bytes.  Maximum sized payloads contain an attack signature and are padded 

to about 1350 bytes which allows 40 bytes of header IPv6 header data, 20 bytes of TCP 

data, and room for the ESP header/padding without exceeding the maximum transmission 

unit of 1500 bytes for an Ethernet packet.  The statistical payload mix is based on the 
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assortment shown in Table 3.3.  The mix is derived from Internet data collected in 

February 2001 by the Measurement & Operations Analysis Team from the NLANR 

(National Library for Applied Network Research) project, as analyzed in [Agi04].  In this 

set of experiments, the statistical mix is interpreted as the payload size, rather than the 

packet size.  Thus, the statistical mix workloads contain 6 parts 40 byte attacks, 4 parts 

576 byte attacks, and 1 part 1350 byte attack. 

 

 

Table 3.3: Packet Size Statistical Mix  

 

 

3.7.3  Network Configuration  In lieu of varying the subnet size, three network 

configurations are examined with fewer to more required SAs.  In the Single 

configuration, three unique peer-to-peer connections are used, requiring six SAs.  In the 

Server configuration, one host acts as a server, or central node, to which the other five 

hosts send attacks requiring 10 SAs.  Finally, the Star configuration generates traffic from 

each host to a random selection of the 5 other hosts, which requires up to 30 SAs.  Figure 

3.2 illustrates the different configurations. 
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Figure 3.2: Network Configurations 

 

3.7.4  Key Method  The keying method is either static or dynamic.  Static keying 

creates the baseline results which are subsequently compared to dynamic keyed results.  

With static keying, all keys are provided beforehand to each host, and a list of those keys 

is also provided to the decryption processor.  In dynamic mode, network hosts generate 

IPSec keys dynamically through IKE (using a modified version of racoon), then update 

those keys and send them to the decryption processor, adding both network and CPU 

overhead to the hosts and IDS machine. 

3.7.5  Phase 2 Key Expiration Time  Also driven by the LAN size limitation, 

Phase 2 key expiration time is set to two fairly short values, 15 and 30 seconds, 

generating high levels of key-exchange traffic. 
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3.8 Test Bed Setup 

 This section describes all vital information needed to recreate the experiment.  

Sections 3.8.1 and 3.8.2 describe the physical setup and IPv6 / IPSec configuration, 

respectively, as well as the software present on each network host.  Sections 3.8.3 

through 3.8.7 provide more detail on the software packages and their setup. 

3.8.1  Physical Setup  The entire test LAN consists of 8 separate physical 

computers.  Each computer is running Windows 2000 with VMWare 4.01 build 5289 

executing a FreeBSD 4.10 guest OS.  All computers are Dell Poweredge 1650’s, with the 

exception of the IDS, which is a Dell Poweredge 1750.  Specifications and software 

packages are provided in Table 3.4.  Computers are connected through an 8 port hub and 

limited (via VMWare) to 10Mbps. 

 

Table 3.4: Computer Configuration 

Machine 
IPv6 

Address CPU 
Installed Memory 

(allocated to VMWare) 

Research 
Software  
Installed 

IDS 2004::1 Dual Intel P4 
2.4 GHz* 

1024 (768) server 
cpumon 
racoon 

     
Generic 

Host 
2004::2 
2004::3 
2004::4 
2004::5 
2005::7 
2004::8 

Intel PIII 
1.4GHz 

512 (384) attackclient 
v6listen 
cpumon 
racoon2 

     
Control 
Node 

2004::6 Intel PIII 
1.4GHz 

512 (384) attacknet 

     
* The VMWare guest OS only uses one processor 
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3.8.2  IPv6 / IPSec Setup  Enabling IPv6 in FreeBSD 4.10 is a simple matter of 

adding a few lines to the rc.conf file, since the kernel enables IPv6 support by default.  In 

these experiments, no host was acting as an IPv6 router, all addresses were set manually.  

# file: rc.confl 
ipv6_enable=”YES”  #enable IPv6 
ipv6_ifconfig_lnc0=”2004::1” #configure network device lnc0 with IPv6 address 2004::1

 

Configuring IPSec begins with a few non-default kernel options.  The IPSec-

enabled kernel must include the following lines in the configuration file: 

# file: mykernel 
options          IPSEC              #IP security 
options         IPSEC_ESP        #IP security (crypto; define w/ IPSEC) 
options          IPSEC_DEBUG  #debug for IP security 

 

After building the kernel with this configuration, IPSec has to be implemented via 

SPD entries, as well as SAD entries in the case of manual (static) keying.  Both are 

accomplished with the setkey utility.  For either static or dynamic keying, SPD entries 

have to be generated.  This is a matter of defining a set of host-host policies along with 

associated processing conditions.  First, all ICMPv6 traffic is explicitly excluded from 

IPSec processing.  Unfortunately, IPv6’s neighbor solicitation/discovery takes place via 

ICMPv6 and IPSec protection of such traffic leads to hosts “losing” each other on the 

network.   

#file: manual_1 or racoon_1.15 or racoon_1.30 
#! /bin/sh 
setkey -c <<EOF 
spdadd 2004::2 2004::1 ipv6-icmp -P out none; #exclude incoming icmpv6 traffic 
spdadd 2004::1 2004::2 ipv6-icmp -P in none; #exclude outgoing icmpv6 traffic 
… (repeat for each host) 
EOF 
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To distinguish between encrypted and clear traffic using IPSec security 

associations, two ports are used—port 326 for encrypted traffic, and port 325 for clear 

traffic.  Security Policies are set up to encrypt/decrypt any outgoing/incoming traffic 

according to IPSec-ESP rules.  Note port 525 is used for secret-key sharing with the IDS 

interface, and is therefore protected with IPSec as well. 

#file: manual_2 or racoon_2.15 or racoon_2.30 
#! /bin/sh 
setkey -c <<EOF 
spdadd 2004::2 2004::1[525] tcp -P out ipsec esp/transport//require ; # process outgoing 
spdadd 2004::1 2004::2[525] tcp -P in ipsec esp/transport//require ; # and incoming 
spdadd 2004::2[525] 2004::1 tcp -P out ipsec esp/transport//require ; # data on port 525 
spdadd 2004::1[525] 2004::2 tcp -P in ipsec esp/transport//require ; # to/from host 
         # 2004::1 
spdadd 2004::2 2004::3[326] tcp -P out ipsec esp/transport//require ; # process outgoing 
spdadd 2004::3 2004::2[326] tcp -P in ipsec esp/transport//require ; # and incoming 
spdadd 2004::2[326] 2004::3 tcp -P out ipsec esp/transport//require ; # data on port 326 
spdadd 2004::3[326] 2004::2 tcp -P in ipsec esp/transport//require ; # to/from host 
         # 2004::3 
… (repeat for each host) 
EOF 

 

At this point, the configuration files diverge for static and dynamic keys.  When 

using static keys each SA is manually entered, including encryption key.  This is 

accomplished through the following statements.  Although symmetric keys are used, each 

two-way association requires two SAs and therefore two keys. 

#file: manual_2 
#! /bin/sh 
setkey -c <<EOF 
#add spi 2121 to the SAD: 
#traffic from 2004::2 to 2004::1 should be encrypted with 3des-cbc, using the key provided 
add 2004::2 2004::1 esp 2121 -E 3des-cbc 
0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa; 
#add spi 1212 to the SAD: 
#traffic from 2004::1 to 2004::2 should be encrypted with 3des-cbc, using the key provided 
add 2004::1 2004::2 esp 1212 -E 3des-cbc 
0xdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef; 
… (repeat for each host) 
EOF 
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When using racoon or racoon2 IKE daemons, the daemons simply need to be 

executed with a provided configuration file.   

#file: racoon_2.15 
#! /bin/sh 
/usr/local/sbin/racoon2 -f /usr/v6/racoon/racoon15.conf  #execute racoon2 using racoon15.conf

 

The racoon.conf file outlines many configuration options for the racoon or 

racoon2 daemons.  Most defaults were not changed from the example racoon.conf 

included with the racoon packages from KAME.  For these experiments, the IKE 

authentication method used was “pre-shared key,” and keys were stored in psk.txt (set to 

mode 600).  The important non-default configuration lines for racoon.conf are shown 

below.  All settings were identical for each host, guaranteeing the ability to communicate. 

#file: racoon15.conf 
path pre_shared_key "/usr/v6/racoon/psk.txt" ; 
#IKE configuration 
remote anonymous 
{ 
 exchange_mode aggressive,main; 
 my_identifier user_fqdn "sakane@kame.net"; 
 nonce_size 16; 
 lifetime time 1 min;    # sec,min,hour 
 proposal { 
  encryption_algorithm 3des; 
  hash_algorithm sha1; 
  authentication_method pre_shared_key ; #authentication method 
  dh_group 2 ;    #use diffie-hellman group 2 for key 
generation 
 } 
} 
#IPSec configuration 
sainfo anonymous 
{ 
 pfs_group 1;     #perfect forward secrecy group 1 
 lifetime time 15 sec;    #key lifetime = 15 seconds 
 encryption_algorithm 3des ;   #encrypt with 3des-cbc 
 authentication_algorithm hmac_sha1;  #use hmac_sha1 for authentication 
 compression_algorithm deflate ; 
} 
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3.8.3 racoon and racoon2  Racoon is an IKE daemon developed by the KAME 

project [Kam04].  The version used here is racoon-20040408a.  Racoon2 is a slightly 

modified version of racoon, set up to send any freshly generated keys, as well as key 

expiration messages, to the IDS interface.  Modified/new files for this research include: 

Filename (M)odified or (N)ew Functionality Affected/Added 
pfkey.c M isakmp_ph2delete(iph2): now invokes SAexp 
isakmp.c M pk_sendupdate(iph2): now invokes SAadd 

pk_sendadd(iph2): now invokes SAadd 
pk_recvexpire(mhp): now invokes SAdel 

SAadddel.c N SAadd: sends SA information to IDS interface 
SAdel: informs IDS interface that an SA has been deleted

SAexp.c N SAexp: informs IDS interface when an SA has expired 
 

When a message needs to be sent to the IDS, a thread is started and detached, 

limiting the overhead on the host machines.  As such, if the message send fails there is no 

error checking to that effect.  Messages take the formats:  

Message Type Format 
Add a Key ADD^<source>^<destination>^<spi>^<encryption type>^ 

<encryption key length>^<authentication type>^<authentication field length>^
<encryption key>^<lifetime>^<life bytes>^ 

Delete a Key DEL^<source>^<destination>^<spi>^ 
Expire an SA EXP^<source>^<destination>^ 

 

These update messages are sent over port 525 and are encrypted using IPSec, 

guaranteeing their confidentiality to the level of the keys they are transmitting. 

3.8.4 v6listen  A multi-threaded listener for TCP/IPv6 which listens to ports 325 

and 326 on each host computer.   

3.8.5 server  This is the primary application under test.  Server has many threads 

of operation with the functions of accepting key updates from hosts, capturing and 

decrypting network traffic, and performing intrusion detection on the sniffed packets.  In 
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general terms, server maintains an IDS-resident copy of all SADs on the network.  It then 

uses the data to decrypt ESP packets on the network and perform intrusion detection.  

Figure 3.3 shows a detailed flow diagram of server functionality. 

Figure 3.3:  server Functionality 
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Server operation is dependent on several publicly available libraries: 

• libpcap 0.8.1: used by many popular applications such as Snort and 

tcpdump, pcap is an integral part to any packet-sniffing application 

[Pca04]. 

• libpthread: posix thread system, used for implementing server’s 

threads of execution. 

• libbotan v1.2.8: botan is a cryptographic library selected for its ease of 

use and robust support for many algorithms.  Though server natively 

only supports DES, Triple DES, and AES, expanding support to other 

IPSec algorithms such as cast128 and blowfish is trivial, making botan 

a good selection. 

The three primary threads of server are shown in Figure 3.3 and include the 

packet-capturing thread, the SAD maintenance thread, and the SAD update thread, which 

is actually a pool of 32 threads receiving updates.  When running in static keying mode, 

the SAD update threads and SAD maintenance threads are not started, leaving only the 

packet sniffing thread running. 

3.8.6 attacknet and attackclient  To test the secret-key sharing framework, an 

network of attacking computers was developed consisting of an instance of attackclient 

running on each host, and one master node running attacknet which controls the clients.  

Each client is initialized with the IDS rules file, and uses those rules to create and send 

attack payloads to another listening host.  All attacks begin at the application layer, by 

writing attack payloads to an open socket.  These clients maintain counts of the number 
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of attacks sent, as well as the number of bytes sent during a particular run of an 

experiment.   

Attacknet is the master control for the experiments.  It maintains a connection to 

each host, as well as to the IDS.  Prior to an experimental run, attacknet polls and logs 

starting status of the clients, resets their counters, and sets the traffic generation 

parameters including random seed.  It then tells the IDS to begin logging packet data, and 

begins attacks.  Upon completion, attacknet halts the attacks, logs end status of the clients 

as well as attacks detected by the IDS.  Although different modes can be set while 

attacknet is running, it must be provided a configuration file for startup which tells 

attacknet the address of the IDS and the clients on the network, as well as provides the 

option to load up to 64 quick-command buffers.  If complex commands are run often, 

they can be loaded in the configuration file and then quickly executed by typing “quick 

<number>.”  An example of a configuration file for running in star mode is shown in the 

following box. 

#file: attacknet-star.cfg 
#first line is the address of the IDS 
2004::1 
#these are the clients 
2004::2 2004::3 2004::4 2004::5 2004::7 2004::8 
#following are quick cfg lines: 
timesync  
connect 600 
status 
2004::2 -cfg star 2004::3 2004::4 2004::5 2004::7 2004::8 
2004::3 -cfg star 2004::2 2004::4 2004::5 2004::7 2004::8 
2004::4 -cfg star 2004::3 2004::2 2004::5 2004::7 2004::8 
2004::5 -cfg star 2004::3 2004::4 2004::2 2004::7 2004::8 
2004::7 -cfg star 2004::3 2004::4 2004::5 2004::2 2004::8 
2004::8 –cfg star 2004::3 2004::4 2004::5 2004::7 2004::2 
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3.8.7  cpumon:  This is a simple utility which reads the FreeBSD KVM to 

determine how the CPU is being utilized.  The output is directed to a file which is then 

parsed to determine CPU utilization over time.  A sample of the output is:  

#file: xx-xx-icpu 
Time  User  Wait  Kernel  Int  Idle 
1102109297 0.000000 0.000000 0.031250 0.000000 0.968750 
1102109298 0.007752 0.000000 0.023256 0.000000 0.968992 
1102109299 0.010336 0.000000 0.023256 0.000000 0.966408 
1102109300 0.009690 0.000000 0.023256 0.000000 0.967054 
1102109301 0.009288 0.000000 0.023220 0.000000 0.967492 

 

3.9 Evaluation Technique 

These experiments are conducted through empirical study.  The availability of the 

FreeBSD operating system with nearly all desired functionality makes the choice fairly 

simple.  The combination of cpumon and server provide all of the necessary metrics to 

evaluate the system.  Additionally, all hardware for empirical study is readily available.  

Evaluation with analysis or simulation would likely require as much or more effort. 

Validation of the test bed is conducted in several steps.  As the framework is 

being built essentially from scratch, testing is done throughout development to ensure 

correct operation of different components.  When all sub-parts are integrated into the 

finished product, pilot studies and single attacks are executed to verify overall 

functionality.  The steps taken to validate the test bed are listed in Table 3.5. 

Generic validation criteria is that single network attacks are decrypted and 

decoded correctly by IDS interface and the appropriate alert is generated by the IDS.  

Using two clients, one to send and one to receive, a single attack is generated with the 

framework in dynamic mode, and then in static mode.  If the IDS flags an alert, the 
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Table 3.5: Validation Tests 

Validation Goal Validation Test Validation Criteria 
Detect single 
encrypted attacks 

1 attack sent from client to client Attack is decrypted by the IDS 
interface, and the IDS alerts the 
attack 

   
Detect multiple 
encrypted attacks 

100 attacks sent from each host in 
star configuration at a low rate in both 
static and dynamic modes 

All attacks detected 

   
server sustains 
proper operation 

300 second runs in star configuration 
with low attack rate in dynamic mode 

server SAD size increases and 
decreases appropriately when 
scenario is over 

   
Framework 
generates 
appropriate traffic 
on network 

300 second runs in star configuration 
are examined in Ethereal 

TCP conversations between the 
IDS and clients only occur at 
specified key expiration intervals 

   
 

framework is functioning correctly.  Then, a test of multiple attacks is conducted.  A set 

number of attacks are sent at a slow rate to ensure all attacks are alerted.  Finally, attacks 

are sent for 300 seconds to ensure that server is functioning correctly for multiple key 

exchanges, and maintaining the SAD appropriately while not letting it grow out of 

control before deleting expired keys.  Finally, traffic generated by the framework is 

examined with Ethereal to ensure it is not generating more traffic overhead than it should 

be.  Once the test bed is validated, empirical data from the experiments can be considered 

valid as well.  Pilot studies are conducted, as mentioned in Section 3.6.2, to determine 

traffic parameters for which there is a low to zero level of packets dropped by server for 

each network configuration and packet size. 
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3.10 Experimental Design 

A full factorial experiment is conducted.  For each network configuration and 

packet size, the baseline is the IDS CPU utilization with server running in static key 

mode with 0% encryption.  These and all other experiments are shown in Table 3.6. 

 
Table 3.6: Experiment List 

 
Configuration Key Method Key Expiration % Encrypted Payload Size 

Static n/a 0,33,66,100%small, mix, large 
    
Dynamic 15, 30 sec 0,33,66,100%small, mix, large 

Star 

    
Static n/a 0,33,66,100%small, mix, large 
    
Dynamic 15, 30 sec 0,33,66,100%small, mix, large 

Single 

    
Static n/a 0,33,66,100%small, mix, large 
    
Dynamic 15, 30 sec 0,33,66,100%small, mix, large 

Server 

    
 

Each experiment is executed until steady state is reached, i.e., when the standard 

deviation of the IDS CPU utilization is within about 5% of the mean.  Ten replications 

with different random seeds are executed for each experiment.  It is important to note that 

repeating an experiment twice with the same seed is likely to produce slightly different 

results.  Although burst sizes and generated wait times are consistent between runs, actual 

wait time is difficult to control.  Initially, the usleep(long microseconds) was used for 

delaying such intervals.  However, due to the fact that it suspends thread execution and 

does not guarantee a return time, a new usleep function was created to simply occupy the 

processor with a busy loop until the specified number of microseconds had passed.  The 
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maximum resolution required by the experiments is around 10 milliseconds, and a 

comparison between the accuracy of usleep and new_usleep at 10 milliseconds (Table 

3.7) shows how much more reliable new_usleep is.  Even this does not guarantee exact 

results, but provides higher consistency by maintaining control of the CPU.   

 
Table 3.7: usleep/new_usleep Comparison 

 

Function Requested Wait 
(μs) Replications Actual Wait (Mean) Actual Wait (Standard 

Deviation) 
usleep 10000 10000 19984.73 5069.38 

     
new_usleep 10000 10000 10036.99 304.72 

     
 

3.11 Experimental Design for Results Analysis and Interpretation  

Upon completion of the experimental trials, the data is compared to the baseline 

data, and the CPU utilization examined across runs from least CPU intensive to most.  It 

is determined whether the secret-key sharing framework imparts statistically significant 

overhead onto the network and/or IDS CPU.  Analysis of Variance (ANOVA) is 

performed across the factors of key expiration time, percentage encrypted traffic, and 

keying mode to determine how each affects the CPU utilization and throughput.  It is 

expected that main effects will explain the vast majority of variance, and interaction 

effects will be insignificant.  The results of these tests are detailed in Chapter 4. 
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3.12  Summary 

This chapter presents an experimental methodology for determining the effect of a 

secret-key sharing framework on intrusion detection capability for encrypted traffic and 

the overhead it imparts on the network and IDS CPU.  Experimental results and analysis 

is presented in Chapter 4. 
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4 Analysis 

4.1 Introduction  

This chapter presents experimental results and analysis.  Section 4.2 describes 

how the data was collected and compiled.  Section 4.3 discusses the data rate selection, 

and goodput/throughput ratio.  Section 4.4 explains attack detection rates and Section 4.5 

looks at the network overhead directly related to the IDS.  Section 4.6 examines the CPU 

utilization for the IDS computer.  Section 4.7 discusses research limitations, and Section 

4.8 is the chapter summary. 

 

4.2 Data Collection and Analysis Methods 

The experiments have ten trials per iteration, with each trial is lasting for five 

minutes.  This allows the standard deviation of IDS CPU utilization to fall to within 

approximately 5% of the mean.  Packet logs are collected by the IDS computer for data 

rate analysis.  The IDS, rather than a third-party computer, is chosen to measure 

throughput so that decrypted goodput can also be logged.  The server software also 

collects the IDS CPU utilization measurements and all statistics relating to packet 

collection/decryption/attack detection.  Time between experiments is at least 45 seconds 

which allows IPSec keys to expire and require refreshing.  This also gives an opportunity 

to observe transient behavior. 

Data is initially compiled using a custom C++ program called parsedata.  This 

program extracts mean values for IDS and host CPU utilization, throughput, and goodput, 

as well as raw values for attack detection rate, pcap packet drop rate, and number of 
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undecryptable packets.  The data imported into Excel where it is further consolidated and 

displayed in graphical form.  Analysis of Variance (ANOVA) for the IDS CPU response 

and throughput is performed with Mathematica.  Mathematica provides native support for 

three-way ANOVA and is discussed in Section 4.6. 

 

4.3 Throughput and Goodput Rates 

In an environment of gigabit Intrusion Detection Systems, the most obvious 

shortcoming of these experiments is the low data rates of the presented workloads.  

Figures 4.1-4.3 display the experimental mean throughput rates, grouped by attack 

payload size.  As shown, the throughput ranges from about 0.04Mbps to 0.35Mbps.  

Given the maximum throughput allowed by VMWare is 10Mbps, the submitted 

throughput is quite low.  A few factors influence the restriction.  To begin with, the 

aggregate traffic generated by six hosts generating attacks with no delays between is 

about 2.5Mbps.  However, the limiting factor is the server software, which was dropping 

greater than 50% of packets at that data rate, the cause of which is discussed in the next 

paragraph.  Consequently, the attack generation rate is reduced until an acceptably low 

percentage of packets are dropped by the IDS computer, as discussed in Section 3.6.2.  

The cause of the high packet drop rate is ultimately undetermined, but there are a 

few possibilities.  Surprisingly, it is not due to the increased loading placed on the CPU 

by the decryption process.  It also is not due to the un-optimized detection engine.  Pilot 

studies which only logged packet arrivals and drops without decryption or intrusion 

detection functions yield similarly high packet drop rates.  Additionally, since the 
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Figure 4.1: Mean Throughput for Experiments with Large Attack Payloads 
 

Figure 4.2: Mean Throughput for Experiments with Mixed Attack Payloads 
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CPU is not even close to being overloaded while packets are being dropped discounts the 

possibility the decryption/IDS loading was too much for the CPU to handle.  It could be 

due to the multi-threaded operation of the IDS, contrasted to Snort’s single-threaded 

operation, which, as an open-source IDS standard, is capable of handling a much higher 

throughput than was presented in these experiments.  With several threads vying for 

control of the CPU, it is possible that packets are dropped while the packet-handling 

thread is not in control.  Some Internet references indicate that the default value for 

BPF_BUFSIZE of 4KB is too small for fast packet sniffing applications.  External 

empirical trials estimate that the buffer size should be set as high as 4MB for sniffing 

applications [Bro04, Fre04].  However, review of the Snort source code shows that Snort 

does not directly modify the value, rather that it uses the value overridden by libpcap of 

not more than 32KB (in pcap-bpf.c, the BIOCGBLEN ioctl is used to set the read buffer 

Figure 4.3: Mean Throughput for Experiments with Small Attack Payloads 
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size) [Pca04, Roe04, Sou03].  Since server also uses libpcap, it should not be affected 

any differently than Snort.  Regardless of why the drop rates are high with higher 

throughputs, the effect is eliminated for the experiments by studying the response to 

workloads at (low) throughputs which make drop rates insignificant. 

Observing Figures 4.1-4.3 shows the obvious trend that a higher percentage of encrypted 

traffic and configurations requiring more security associations (SAs) yield higher 

throughputs.  Table 4.1 summarizes t-tests which are performed on every pair of 

experiments with throughput as the response variable.  For each factor, the percentage of 

statistically different experiments is determined by isolating the group of experiment 

pairs which vary only in that factor, and determining how many of those total 

comparisons show a statistical difference with 95% confidence.  

 
Table 4.1  Percentages of Comparisons Showing Statistical Differences with 95% 

Confidence, Specific to Variation in a Particular Factor 
 

Factor 
Total Number 

of 
Comparisons 

Number of 
Comparisons 

Showing 
Differences 

Percentage of  
Comparisons 

Showing 
Differences 

95% Confidence Interval 
for Percentage of 

Comparisons Showing 
Differences 

Key Method 81 78 96.30% 92.18 – 100% 
Configuration 90 73 81.11% 73.02 – 89.20% 
% Encryption 108 97 89.81% 84.11 – 95.52% 

 

For all attack payload sizes and percentages of encrypted traffic, there is a 

statistically significant difference in throughput between single/star and server/star 

configurations with 95% confidence.  In the majority of cases, however, there is not a 

significant difference between single/server configurations, as there is less of a change 

between number of required SAs and therefore a smaller difference in key negotiation 
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traffic.  Recall that single configuration requires six SAs and server mode requires 10, 

while star mode requires 30.   Differences in key method greatly affect the throughput, 

and a statistical difference is shown in nearly every comparison.  While percentage 

encryption does not have as large of an impact on throughput, almost 90% of 

comparisons do show a statistically significant difference when only this factor is varied. 

The trend of higher throughput for higher encryption percentage and more SAs is 

logical since the majority of the goodput, in the form of attack payloads, remains the 

same across all variations of factors except payload size.  As IPSec is applied, the ESP 

header and tail are added to encrypted payloads as well as padding, which can be up to 63 

bytes with TripleDES due to the 64 byte block size.  Note that HMAC-SHA1 

authentication is added to the ESP packets in the dynamic-keyed experiments, though this 

addition is insignificant, accounting for less than 1% of total throughput.  The more 

significant differences in throughput are due to the number of SAs required, which 

generate quite a bit of traffic between hosts for IKE and IPSec key negotiation.  Figures 

4.4-4.6 show a ratio of mean goodput to mean throughput for each payload size.  

As the figures show, the ratio of good data transmitted to the total data transmitted 

drops anywhere between 0.06 to 0.16 from single mode to star mode, as more SAs are 

added increasing the network overhead.  The surprising result, seen on Figure 4.6, is that 

with small payloads, 100% encrypted traffic, and star configuration, only about 6.5% of 

total network traffic is user data.  This can have a significant effect on the IDS, which 

scans all traffic.  In these experiments, UDP traffic is not analyzed by the IDS, simply 

logged and discarded.  However, since IKE and IPSec exchanges take place using the  
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Figure 4.4: Ratio of Mean Goodput to Mean Throughput for Experiments with Large 
Attack Payloads 

 

 

Figure 4.5: Ratio of Mean Goodput to Mean Throughput for Experiments with Mixed 
Attack Payloads 
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UDP protocol under the racoon implementation, a realistic IDS which scans UDP 

packets has to contend with a significant amount of traffic brought on by the IKE/secret-

key sharing framework to ensure complete detection capability.  While a typical TCP 

attack, such as a buffer overflow in clear text, may generate only a small amount of TCP 

traffic, the ensuing IKE and IPSec key negotiations from the same attack over an 

encrypted channel can create quite a bit of added traffic for the IDS to examine.

 Analysis of variance (ANOVA) on the throughput response is shown in Table 4.2, 

grouped by attack payload size.  The F-Ratios indicate all factors and interactions are 

significant with 95% confidence.  The first-order factors explain the highest amount of 

variation, though no one factor stands out across all three payload sizes.  For large attack  

 

Figure 4.6: Ratio of Mean Goodput to Mean Throughput for Experiments with Small 
Attack Payloads 
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Table 4.2: Analysis of Variance for Throughput 

Large Attack Payloads 

Factors DF SumOfSq MeanSq F-Ratio F-Table P Value % Variation 
km 2 0.065825 0.032913 190.0559 3.01 0 17.35% 
pe 3 0.11665 0.038883 224.5331 2.62 0 30.74% 
nc 2 0.070623 0.035312 203.909 3.01 0 18.61% 

km * nc 4 0.027324 0.006831 39.44572 2.39 0 7.20% 
km * pe 6 0.023238 0.003873 22.36456 2.12 0 6.12% 
nc * pe 6 0.010305 0.001717 9.917445 2.12 4.72E-10 2.72% 

km * nc * pe 12 0.00935 0.000779 4.499212 1.77 1.05E-06 2.46% 
Error 324 0.056108 0.000173    14.79% 
Total 359 0.379423      

        
Mixed Attack Payloads 

Factors DF SumOfSq MeanSq F-Ratio F-Table P Value % Variation 
km 2 0.077932 0.038966 622.9065 3.01 0 25.10% 
pe 3 0.075131 0.025044 400.3445 2.62 0 24.19% 
nc 2 0.056984 0.028492 455.4659 3.01 0 18.35% 

km * nc 4 0.030197 0.007549 120.6822 2.39 0 9.72% 
km * pe 6 0.026341 0.00439 70.18098 2.12 0 8.48% 
nc * pe 6 0.013584 0.002264 36.19184 2.12 0 4.37% 

km * nc * pe 12 0.010097 0.000841 13.45139 1.77 0 3.25% 
Error 324 0.020268 6.26E-05    6.53% 
Total 359 0.310534      

        
Small Attack Payloads 

Factors DF SumOfSq MeanSq F-Ratio F-Table P Value % Variation 
km 2 0.079815 0.039908 4598.354 3.01 0 27.58% 
pe 3 0.073147 0.024382 2809.447 2.62 0 25.27% 
nc 2 0.051858 0.025929 2987.686 3.01 0 17.92% 

km * nc 4 0.029816 0.007454 858.8884 2.39 0 10.30% 
km * pe 6 0.026709 0.004451 512.9192 2.12 0 9.23% 
nc * pe 6 0.015305 0.002551 293.9161 2.12 0 5.29% 

km * nc * pe 12 0.009962 0.00083 95.65455 1.77 0 3.44% 
Error 324 0.002812 8.68E-06    0.97% 
Total 359 0.289424      

        
Legend     

Symbol Factor     
km Key Method     
pe Percentage of Encrypted Traffic     
Nc Network Configuration     
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payloads, percentage of encrypted traffic affects throughput more than in the cases of 

small and mixed attack payloads.  This can be attributed to the higher overall throughput 

present in large-payload scenarios—the key method and network configuration add a 

smaller relative overhead to the throughput, whereas percentage of encrypted traffic adds 

more overhead on a more consistent per-packet basis. 

 

4.4 Attack Detection Rates, Dropped Packets, and Undecryptable Packets 

One of the goals for the experiments was to have a high, if not perfect, attack 

detection rate given that an intrusion detection system which does not provide thorough 

coverage is not worth much.  Average detection rates for large, mixed, and small payload 

sizes are 98.92%, 95.85%, and 98.3% respectively, across all experiments for that 

payload size.  The actual detection rates range from a low of 91.75% to a high of 

100.83%, with 89% of the experiments yielding a detection rate of 95% or better.  Low 

detection rates are generally correlated to dropped packets, and packets which could not 

be decrypted, an event discussed later in the section.  Detection rates over 100% do occur 

on a few occasions (16% of experiments) and are due to TCP retransmits by the attacking 

hosts.  In some cases the receiving host fails to ACK a particular packet, and the packet is 

resent.  As the retransmits occur at the TCP layer and not the application later, they are 

not recorded as additional attacks sent—however the IDS intercepts and alerts on the 

attacks all the same, driving the attack detection rate slightly over 100%.  The uncertainty 

of the TCP retransmits must be considered in the lower bound of the attack detection rate 

as well.  Experiments showing no packet loss and independent trials conducted after data 
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collection indicated that up to 2.5% of attacks were duplicated in a TCP retransmit, 

though a bound is not guaranteed.  TCP retransmits were unexpected, and were not 

tracked for the experiments.  Therefore they introduce some error into the attack 

detection rate which is not fully accounted for.  Table 4.3 summarizes attack detection 

rate and other statistics discussed in this section.  

Packet drop statistics are recorded by pcap, and as mentioned in Section 4.3 are 

necessarily low.  With the exception of one experiment (number 56 from Appendix A), 

which yields a mean drop rate of 5.15%, all drop rates are below 5%.  Experiments with 

mixed attack payloads tended to drop more packets than the other sizes, due to the fact 

the attacks were being sourced at the same rate as small attack payloads but with a higher 

average size (see Table 3.3).  That, the 100% encrypted traffic, and the 15 second key 

expiration time for experiment 56 are all factors influencing the slightly higher drop rate.  

The overall mean drop rates for large, mix, and small payloads are 0.55%, 2.59%, and 

1.51% respectively and don’t follow any particular trend across factors. 

 
Table 4.3: Attack Detection Related Statistics 

 
Statistic Attack Payload Size Low Value Mean High Value 

Large 94.89% 98.92% 100.83% 
Mix 91.75% 95.85% 100.04% 
Small 95.85% 98.30% 100.04% 

Attack Detection 
Rate 

    
Large 0.00% 0.55% 3.20% 
Mix 0.72% 2.59% 5.15% 
Small 0.33% 1.51% 4.55% 

Packet Drop Rate 

    
Large 0.00 1.17 5.80 
Mix 0.00 3.87 75.50 
Small 0.00 1.28 6.40 

Undecryptable 
Packets (raw) 
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Finally, server keeps a record of packets which it is unable to decrypt.  Generally, 

the number of undecryptable packets is quite low, sometimes zero or around 5 in 20,000+ 

packets examined.  The only way this occurs is if the replicated SAD does not contain the 

right decryption key, in which case decryption cannot be completed.  Some transient 

behavior is observed in which a host negotiates an IPSec SA and transmits an attack 

before the key has been entered into the IDS’ database, in which case server may be 

unable to decrypt a handful of packets before the key is present.  However, in one 

experimental run, a very high number of packets were undecryptable.  Specifically, in run 

number 7 of experiment 47 (see Appendix A) 564 packets were undecryptable.  This is 

almost certainly due to the server software missing a transmitted key, or racoon2 failing 

to transmit the key to server.  The server program is a passive listener for keys and does 

not attempt to actively obtain a decryption key from a host on the network, rather it relies 

on the hosts to send updated keys proactively.  Therefore, if a key transmission somehow 

times out or fails, server will not have the means to decrypt any packets until a new key 

is generated and updated. 

Thus this emphasizes the tradeoff between complete protection and non-

interference.  A design decision is made not to provide server a key solicitation capability 

due to the possibility it would further load down the network and hosts.  If key 

solicitation were allowed, perhaps no packets would be “undecryptable.”  However, the 

penalty on IDS performance as decryption keys are retrieved from a host across a 

network can be severe. 
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4.5 IDS Related Traffic 

In each experiment, the packet log is analyzed to determine the percentage of 

traffic entering or leaving the IDS host.  Figures 4.7-4.9 display the results.  Since IDS 

related traffic in static keying mode is either zero or negligible, it is not displayed in the 

figures.  

The graphs show that in some cases a very high percentage, up to 58.6%, of 

traffic is IDS related.  What they don’t show, however, is that the raw throughput due to 

the IDS and secret-key sharing framework is very consistent for any keying 

mode/network configuration combination across other factors.  This is logical, since key 

refreshes occur at fixed time intervals (15 seconds, 30 seconds, or never) and for a 

specific number of SAs for each configuration.  Rather, the amount of non-IDS related 

throughput changes and thus affects the percentages shown.   

 

 

Figure 4.7: Percentage of IDS Related Traffic for Experiments with Large Attack 
Payloads 
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Figure 4.8: Percentage of IDS Related Traffic for Experiments with Mixed Attack 
Payloads 

 

 

Figure 4.9: Percentage of IDS Related Traffic for Experiments with Small Attack 
Payloads 
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The secret-key sharing framework does generate a fair amount of traffic.  The 

actual SAD updates are quite small, however they are transmitted over IPSec-secured 

channels, which require the standard fare of IKE and IPSec key negotiation traffic.  This 

is the simplest method of ensuring the encryption keys are afforded the same level of 

protection as the data they are meant to protect.  However, this method clearly can create 

a substantial amount of overhead related to how many hosts are on the network.  As 

offered load increases between hosts, though, the percentage should drop as SA updates 

are time dependent and not throughput dependent.  Note that if only one IPSec endpoint 

resides on the network local to the IDS, the traffic is cut in half as the remote node will 

not be transmitting SA updates to the IDS.  Additionally, this traffic could be decreased 

by using the UDP protocol to transmit SA updates to the IDS, or by protecting only host-

to-IDS traffic with IPSec, rather than host-to-IDS and IDS-to-host since the return traffic 

does not contain any sensitive data. 

 

4.6 IDS CPU Utilization 

A primary research focus is to determine what, if any, inferences about the secret-

key sharing framework can be drawn by observing the IDS CPU utilization across 

variation of factors.  Figures 4.10-4.12 show the mean IDS CPU utilization for the 

experimental factors.  Depending upon experimental factors, using dynamic keying with 

30 second key expiration times increased CPU load by up to 14.5% (relative to static-

keyed experiments), and dynamic keying with 15 second key expiration time increased 

the load by up to 20.7%, as determined with the following equation. 
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CPU Utilization with Dynamic Keying –  
CPU Utilization with Static Keying % Increase = 100 * 
CPU Utilization with Static Keying 

 

 For the most part, the results confirm what should be intuitive.  As encryption 

percentage is increased, CPU utilization increases.  In a few cases, this does not strictly 

hold, but the trend is evident.  Similarly, as the number of SAs in circulation increases 

(expiration times and configurations change), the CPU utilization is slightly higher.  In 13 

of 30 cases, the mean CPU utilization actually decreased from single configuration to 

server.  Seeing that server configuration requires more SAs than single, this result is 

unexpected.  However, there is not a statistical difference at the 95% confidence level, so 

that result is more or less inconclusive.   

 

 

Figure 4.10: Mean IDS CPU Utilization for Experiments with Large Attack Payloads 
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Figure 4.12: Mean IDS CPU Utilization for Experiments with Small Attack Payloads 
 

Figure 4.11: Mean IDS CPU Utilization for Experiments with Mixed Attack Payloads 
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Observing experiments with 0% encryption shows no real trend applying to the 

CPU utilization across network configurations when using static keying.  This indicates 

that performance differences due to configuration changes in the dynamic-keyed 

experiments are primarily due to the key exchanges themselves, and not related to 

server's operations of retrieving keys from and maintaining the SAD. 

In most cases, experiments using dynamic keying with 30 second key expiration 

times do not incur enough of a penalty on the CPU to statistically differentiate them from 

static-keyed experiments with the same workload characteristics with 95% confidence.  

However, in all but three cases there is a statistically significant difference between 

static-keyed experiments and dynamic-keyed experiments with 15 second expiration 

times.  Figures 4.13-4.15 show these measurements with their confidence intervals.  On 

overlapping confidence intervals, the t-test confirms the statistical difference in all cases 

except three.  Those inconsistencies are most likely explained by experimental error. 

 

Figure 4.13: Mean IDS CPU Utilization for Experiments with Large Attack Payloads, 
Including 95% Confidence Interval 
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Figure 4.15: Mean IDS CPU Utilization for Experiments with Small Attack Payloads, 
Including 95% Confidence Interval 

 

 

 

 

Figure 4.14: Mean IDS CPU Utilization for Experiments with Mixed Attack Payloads, 
Including 95% Confidence Interval 
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 ANOVA was performed on the CPU utilization metric using Mathematica.  Table 

4.4 shows a summary of the allocation of variation for each attack payload size.  The first 

thing to note is the percentage of variation attributed to experimental error.  There are a 

number of possible explanations for this error.  The first is simply the unpredictable 

nature of the distributed system and Ethernet network.  Although every effort is made to 

control the workload, the manner in which it is supplied (at the application layer) leaves 

much underlying activity to the whim of the operating system.  For example, the TCP 

retransmissions discussed in Section 4.5 have a negative effect on the IDS CPU 

utilization, as they artificially increase the workload—and those retransmissions, 

unfortunately, are seemingly unpredictable.  On top of trusting the FreeBSD operating 

system and all host-to-host interactions on the Ethernet LAN to act in a perfectly uniform 

manner across experiments, the impact of VMWare must also be considered.  Although 

the FreeBSD guest operating system is installed on top of a clean-install Windows 2000 

host, with no extraneous programs running in the background, Windows 2000 is certainly 

undergoing a minimal level of activity in the background.  Since that activity is ignored 

in these experiments, it is likely to introduce some variation which must be attributed to 

experimental error. According to the F-ratios shown in Table 4.4, each factor is 

significant with 95% confidence except for the third order interaction of key method, 

configuration, and percent encryption using small and mixed sized payloads.  Not 

surprisingly, the largest source of variation in CPU utilization is due to the percentage of 

encrypted traffic present in the workload.  TripleDES decryption is a cycle-intensive 

operation, and without  
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Table 4.4: Analysis of Variance for IDS CPU Utilization 

Large Attack Payloads 

Factors DF SumOfSq MeanSq F-Ratio F-Table P Value % Variation 
km 2 0.010648 0.005324 77.76557 3.01 0 9.56% 
pe 3 0.065963 0.021988 321.1613 2.62 0 59.20% 
nc 2 0.003907 0.001953 28.53146 3.01 3.86E-12 3.51% 

km * nc 4 0.001791 0.000448 6.538755 2.39 4.52E-05 1.61% 
km * pe 6 0.004075 0.000679 9.919724 2.12 4.70E-10 3.66% 
nc * pe 6 0.001393 0.000232 3.391675 2.12 0.002936 1.25% 

km * nc * pe 12 0.001458 0.000122 1.775122 1.77 0.051176 1.31% 
Error 324 0.022182 6.85E-05    19.91% 
Total 359 0.111416      

        
Mixed Attack Payloads 

Factors DF SumOfSq MeanSq F-Ratio F-Table P Value % Variation 
km 2 0.006224 0.003112 40.93368 3.01 1.11E-16 7.64% 
pe 3 0.042969 0.014323 188.3878 2.62 0 52.76% 
nc 2 0.001875 0.000937 12.33028 3.01 6.90E-06 2.30% 

km * nc 4 0.000858 0.000214 2.820622 2.39 0.025199 1.05% 
km * pe 6 0.002281 0.00038 5.000203 2.12 6.44E-05 2.80% 
nc * pe 6 0.001273 0.000212 2.789802 2.12 0.011665 1.56% 

km * nc * pe 12 0.001332 0.000111 1.46006 1.77 0.137788 1.64% 
Error 324 0.024633 7.6E-05    30.25% 
Total 359 0.081445      

        
Small Attack Payloads 

Factors DF SumOfSq MeanSq F-Ratio F-Table P Value % Variation 
km 2 0.005161 0.00258 41.271 3.01 1.11E-16 7.76% 
pe 3 0.033955 0.011318 181.035 2.62 0 51.06% 
nc 2 0.0025 0.00125 19.99367 3.01 6.49E-09 3.76% 

km * nc 4 0.000729 0.000182 2.914574 2.39 0.021588 1.10% 
km * pe 6 0.001855 0.000309 4.943752 2.12 7.38E-05 2.79% 
nc * pe 6 0.00165 0.000275 4.397779 2.12 0.000273 2.48% 

km * nc * pe 12 0.000392 3.27E-05 0.522266 1.77 0.900064 0.59% 
Error 324 0.020257 6.25E-05    30.46% 
Total 359 0.066498      

        
Legend     

Symbol Factor     
km Key Method     
pe Percentage of Encrypted Traffic     
nc Network Configuration     
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dedicated cryptographic hardware the burden on the CPU increases greatly as more 

encrypted packets are encountered.  After experimental error, key method is responsible 

for the next largest source of variation, however it is only roughly 1/6th as significant as 

the percent encryption.  Network configuration explains a surprisingly small amount of 

variation, as apparently the number of valid SAs in the system does not in itself generate 

much overhead on the IDS CPU.  The interacting effects of key method and percent 

encryption cause some variation, due to the fact that percent encryption directly affects 

access to the SAD, whose maintenance is dictated by the key method.  Finally, the 

interactions of key method with configuration and configuration with percent encryption 

are responsible for a small amount of variation. 

Though these results cannot be scaled to all situations, they indicate that IDS CPU 

performance does not depend significantly on the number of SAs in the database nor the 

number of SA updates it is receiving through the secret-key sharing framework.  

Although key method is not as significant as percentage of encrypted traffic, any parties 

wishing to use this type of secret-key sharing system need to consider the keying method 

carefully especially if using dynamic keying, since as key expiration time increases it 

becomes more and more like static keying and the difference in IDS performance will be 

negligible.  If, however, very short key expiration times are used and many SAs are 

generated, the IDS performance will suffer increasingly.  Drawing from Table 4.4 and the 

notions presented in Section 4.3 regarding the goodput to throughput ratio, it seems likely 

that increased CPU utilization correlated to key method is due more to the increased key 
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negotiation traffic which the IDS must process than the number of SAs actually in 

circulation.   

 As a final note, it is important to realize that much of the key negotiation traffic is 

due to IKE and IPSec exchanges between hosts, and not directly related to the IDS 

computer.  Therefore, adding IDS functionality with the secret-key sharing framework to 

a network already using IPSec protection with dynamic keying creates only a fraction of 

the overhead that it would first appear.  The large difference is when the secret-key 

sharing framework is added to a network protected only by static keying, in which case 

no key negotiation is required at all.  Bringing this into context shows that adding an IDS 

to an IPSec protected network with dynamic keying may be a very viable option. 

 

4.7 Limitations 

This section explores research limitations, and how the experiments could be 

improved. 

4.7.1 VMWare  The use of VMWare eased the setup and execution of the 

experiments. However, judging from the high experimental errors this may not have been 

the best choice.  There are clearly factors influencing the experiments which are not 

accounted for, and one such factor likely is the influence of VMWare and the underlying 

host operating system, Windows 2000.  If each host was running FreeBSD as a native 

operating system, then the potential influence would be eliminated. 

4.7.2 Throughput  Although these experiments provide useful trend data, it is 

clear that the framework is not ready for any sort of real world use.  Admittedly, as 
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designed the framework was not intended for real world use, however it would be 

beneficial to be able to subject it to more demanding workloads for further trend analysis.  

One of the more interesting future options is to insert the IDS and secret-key sharing 

framework on a larger network with more SA activity, however this would be all but 

impossible until the packet dropping issue is resolved. 

 

4.8 Summary 

This chapter discussed the results of the experiments described in Chapter 3, 

comparing the results of  IDS efforts in static-keyed encrypted networks with those in 

dynamic-keyed networks using the developed secret-key sharing framework.  Though use 

of the secret-key sharing framework incurred up to a 20.7% CPU utilization penalty on 

the IDS computer, the improved security of dynamic keying over static keying makes 

secret-key sharing for IDS an option worth pursuing. 
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5 Conclusions 

 

5.1 Research Contribution 

This research, driven by the advent of IPv6, explores a difficult problem 

exacerbated by IPv6’s inherent security attributes.  A secret-key sharing framework was 

developed utilizing new and existing code to enable intrusion detection in an IPv6 

enabled network employing IPSec protection.  This framework provides a basis for future 

research and/or implementation of such a system.  Additionally, the experimental results 

herein provide insight into the traffic patterns of a LAN using the framework, and the 

added burden placed on the IDS host which is already a highly taxed resource in most 

networks. 

As a byproduct of the primary research goals, a pair of traffic generation 

programs, attacknet and attackclient, were created.  These programs provide a method for 

testing intrusion detection systems from the application layer for up to six network hosts.  

The advantage of this type of traffic generation is it allows standard kernel processing 

including IPSec.  The programs can easily be modified to include any number of hosts, to 

permit more strenuous testing. 

 

5.2 Conclusions 

Experimental results show that a secret-key sharing framework for protecting 

IPSec traffic is a viable option.  This is not to say that the particular framework proposed 

here, or even the methods employed by the framework, are the “best” options.  Rather, 
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despite identified shortcomings of the proposed framework, the relative overhead 

imparted on the network and IDS CPU is not overwhelming.  The door on such a secret-

key sharing option over static keying, at the very least, is not summarily closed. 

To review, the first research goal was to develop the proposed key sharing 

framework and that goal was clearly accomplished.  Though the workloads presented in 

these experiments were not strenuous by today’s standards, the framework effectively 

enabled intrusion detection on encrypted traffic with a high level of accuracy. 

The second research goal was to provide different workloads to the system and 

characterize traffic patterns.  Analysis from Chapter 4 indicates that in some 

circumstances the framework is responsible for a high percentage of total network 

throughput (i.e., star-configured scenarios using small attack payloads, 100% encryption 

and dynamic keying with 15 second expiration times showed that nearly 60% of network 

traffic was directed to or from the IDS host).  That is certainly not desirable performance 

for a “low-overhead” framework, though it does provide better performance on more 

average workloads such as mixed payloads in the single or server configurations using 30 

second key expiration times.  In these scenarios, only 10-15% of traffic was IDS related. 

The final research goal was to examine the CPU utilization of the IDS host, with 

the hypothesis that the packet decryption would be the performance bottleneck.  For the 

scenarios considered, the hypothesis holds.  However, the data also indicates that as LAN 

size increases (i.e., the number of SAs being generated over a period of time increases) 

this may not always be case.  The key method was shown to be responsible for a 

significant 7-9% of variation in CPU response, leading to the conclusion that as key 
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traffic steadily increases, the load on the CPU will likewise.  While it’s true that the 

impact of key method was not as significant as that of the percentage of encrypted traffic, 

if the cryptographic operations were offloaded to a coprocessor (a likely event for a high-

throughput network), changes in key method (SA creation rate) becomes the highest 

source of variation in CPU load.  

 

5.3 Future Research Ideas 

There is much additional research which can be done in this area.  Follow-on 

research could be performed in some of the following areas. 

5.3.1 Key solicitation  As mentioned previously, the server was not given the 

capability to request keys from hosts on the network, and discarded any packets which it 

was unable to decrypt immediately.  It would be possible for the server to be reactive to 

encountering new SPIs, where it would request new keys from the hosts and cache them 

locally.  This may not add much of a penalty to the performance of the framework, and at 

least would guarantee complete protection. 

5.3.2 Higher Throughput and More Hosts  If any future work is done with this 

specific framework, the packet dropping issue must be resolved.  Certainly at this point, 

the framework is a nice idea but hardly qualifies as useful due to the low data rates it can 

effectively protect.  With that problem solved, the framework could be integrated into a 

LAN with more hosts to determine the effects of the increased host count and SA 

activity. 



 

73 

5.3.3 Include Different Operating Systems  At the time of this research effort, the 

only operating system supporting both IPv6 and IPSec concurrently was FreeBSD and 

variants.  In the near future, these capabilities will have to be integrated into other 

operating systems such as Windows in order for consumers to get the full benefit of IPv6.  

At that point, the framework could be ported to these new platforms and performance 

evaluated. 

 5.3.4 Involve a Cryptographic Coprocessor  With cryptographic functions off-

loaded to a coprocessor, this would leave the CPU on the IDS host free to deal solely 

with key reception (or solicitation) and intrusion detection functions.  Many coprocessor 

options are available currently which support data encryption/authentication rates up to 

1.0Gbps for IPSec processing [Saf04, Sun04].  This alone could improve the system as a 

whole, and make the secret-key sharing idea a more realistic option as decryption proved 

to be the bottleneck for these experiments. 

 5.3.5 Possible Improvements to server, racoon2, and the General Framework  

Certain design decisions were made which were not necessarily the best or most efficient 

options.  For example, when keys were exchanged with the IDS, both channels of 

communication were protected with IPSec (both to and from the IDS).  In reality, there is 

no secret information transferred from the IDS to a host, so that channel could be left in 

the clear somewhat lessening communication burden on the IDS.  Additionally, taking 

the original racoon implementation of IKE and IPSec as inspiration, the secret-key 

sharing traffic could have been accomplished over UDP rather than TCP and possibly 

made more efficient. 
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5.3.6 Real-World IDS Integration  The custom IDS developed for these 

experiments is not a good representation of the capabilities generally available to the 

public.  Commercial IDS’ and the open-source Snort include features such as stream 

assembly and complex rulesets which make them much more effective than a simple per-

packet pattern matching engine.  There is no particular reason why the framework 

couldn’t be integrated into Snort.  The release available at the time of the research did not 

support IPv6 traffic other than recognizing it. 
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Appendix A: Experiment Listing 

Experiment 
Number 

Network 
Configuration 

Percentage 
of Encrypted 

Traffic 

Key 
Method 

Key 
Expiration 
Time (sec) 

Attack Payload 
Size 

1 star 33 static n/a small 
2 star 33 static n/a mix 
3 star 33 static n/a large 
4 star 66 static n/a small 
5 star 66 static n/a mix 
6 star 66 static n/a large 
7 star 100 static n/a small 
8 star 100 static n/a mix 
9 star 100 static n/a large 
10 star 33 dynamic 30 small 
11 star 33 dynamic 30 mix 
12 star 33 dynamic 30 large 
13 star 33 dynamic 15 small 
14 star 33 dynamic 15 mix 
15 star 33 dynamic 15 large 
16 star 66 dynamic 30 small 
17 star 66 dynamic 30 mix 
18 star 66 dynamic 30 large 
19 star 66 dynamic 15 small 
20 star 66 dynamic 15 mix 
21 star 66 dynamic 15 large 
22 star 100 dynamic 30 small 
23 star 100 dynamic 30 mix 
24 star 100 dynamic 30 large 
25 star 100 dynamic 15 small 
26 star 100 dynamic 15 mix 
27 star 100 dynamic 15 large 
28 star 0 n/a n/a small 
29 star 0 n/a n/a mix 
30 star 0 n/a n/a large 
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Experiment 
Number 

Network 
Configuration 

Percentage 
of Encrypted 

Traffic 

Key 
Method 

Key 
Expiration 
Time (sec) 

Attack Payload 
Size 

      
32 single 33 static n/a mix 
33 single 33 static n/a large 
34 single 66 static n/a small 
35 single 66 static n/a mix 
36 single 66 static n/a large 
37 single 100 static n/a small 
38 single 100 static n/a mix 
39 single 100 static n/a large 
40 single 33 dynamic 30 small 
41 single 33 dynamic 30 mix 
42 single 33 dynamic 30 large 
43 single 33 dynamic 15 small 
44 single 33 dynamic 15 mix 
46 single 66 dynamic 30 small 
47 single 66 dynamic 30 mix 
48 single 66 dynamic 30 large 
49 single 66 dynamic 15 small 
50 single 66 dynamic 15 mix 
51 single 66 dynamic 15 large 
52 single 100 dynamic 30 small 
53 single 100 dynamic 30 mix 
54 single 100 dynamic 30 large 
55 single 100 dynamic 15 small 
56 single 100 dynamic 15 mix 
57 single 100 dynamic 15 large 
58 single 0 n/a n/a small 
59 single 0 n/a n/a mix 
60 single 0 n/a n/a large 
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Experiment 
Number 

Network 
Configuration 

Percentage 
of Encrypted 

Traffic 

Key 
Method 

Key 
Expiration 
Time (sec) 

Attack Payload 
Size 

61 server 33 static n/a small 
62 server 33 static n/a mix 
63 server 33 static n/a large 
64 server 66 static n/a small 
65 server 66 static n/a mix 
66 server 66 static n/a large 
67 server 100 static n/a small 
68 server 100 static n/a mix 
69 server 100 static n/a large 
70 server 33 dynamic 30 small 
71 server 33 dynamic 30 mix 
72 server 33 dynamic 30 large 
73 server 33 dynamic 15 small 
74 server 33 dynamic 15 mix 
75 server 33 dynamic 15 large 
76 server 66 dynamic 30 small 
77 server 66 dynamic 30 mix 
78 server 66 dynamic 30 large 
79 server 66 dynamic 15 small 
80 server 66 dynamic 15 mix 
81 server 66 dynamic 15 large 
82 server 100 dynamic 30 small 
83 server 100 dynamic 30 mix 
84 server 100 dynamic 30 large 
85 server 100 dynamic 15 small 
86 server 100 dynamic 15 mix 
87 server 100 dynamic 15 large 
88 server 0 n/a n/a small 
89 server 0 n/a n/a mix 
90 server 0 n/a n/a large 
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Appendix B: Availability of Source Code and Configuration Files, and Data 

Source code and configuration files for server, racoon2, cpumon, attacknet, and 

attackclient and all other files related to test bed setup are not included as part of this 

document.  Additionally, all collected data is not printed in the document but is available. 

Interested parties should direct their inquiries to: 

Dr. Richard Raines 

AFIT/ENG 2950 Hobson Way 

Wright-Patterson AFB, OH 

45433-7765 
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